Hunting for Extrasolar Planets using the MMT

Matthew Kenworthy

Steward Observatory, University of Arizona Huachuca Astronomy Club, 21 November 2008

Are there other worlds in the Universe?

The first ones found...

... in 1992, but around a PULSAR!

Indirectly Detecting Planets

- ~300 planetary systems indirectly detected by radial velocity reflex motion
- CANNOT see the planet only its influence on the parent star

Transits

Transits

- Primary transits give star/planet ratio
- Follow-up radial velocity confirms them
- Don't need big telescope for this!
- In space, CoRoT and Kepler

Detecting Planets

- Radial Velocity technique leads the way!
- Transits are catching up though.....
- Others are microlensing, astrometry

 20 years ago, astronomers assumed other planetary systems would be like ours

- 20 years ago, astronomers assumed other planetary systems would be like ours
- We assumed that direct imaging would see a planet first

- 20 years ago, astronomers assumed other planetary systems would be like ours
- We assumed that direct imaging would see a planet first
- Because these extrasolar planet systems look VERY DIFFERENT compared to ours, Radial Velocity and Transits are detecting them first!

Adapted from Burrows, Sudarsky and Hubeny 2004

MMTO 6.5m Telescope

Not-so-point sources

Blue Light

Green Light

Red light

Not-so-point sources

Blue Light

Green Light

Red light

This is called DIFFRACTION LIMITED IMAGING

Not-so-point sources

Planet a million times fainter at 0.5 arcsec Corresponds to Jupiter around a star 30 light years away

Why are they not point images?

Diffraction

But wait! It gets tougher...

But wait! It gets tougher...

• When we use telescopes on the ground, we rarely see diffraction limited images

Turbulent Atmosphere

Turbulent Atmosphere

What we'd like to see...

Credit: G.Bacon, NASA and ESA

...but what we really see

GQ Lup b

SCR 1845 b

'Seeing' is the problem

"Telescopes ... cannot be so formed as to take away that confusion of the Rays which arises from the Tremors of the Atmosphere. The only Remedy is a most serene and quiet Air, such as may perhaps be found on the tops of the highest Mountains above the grosser Clouds." (Isaac Newton, 1730)

Remove the effects of the atmosphere with ADAPTIVE OPTICS!

for IR observations (effective D=6.35m)

AO correction - the longer the wavelength, the more stable star's image

AO correction - the longer the wavelength, the more stable the PSF

The Lyot Project http://lyot.org/

Thermal Imaging with Clio Built by Prof. Phil Hinz

• 3 to 5 micron imaging camera/coronagraph

Typical Clio Observation

A Background Star

Background star equivalent in brightness to a planet of 5Mjupter-

Pluto's orbit

Diffraction Effects

Why does Image Subtraction not work?

- Two images taken about 20 minutes apart are not identical
- Quasi-static 'speckles' are present in all images

But wait! It gets even tougher...

Coronagraph

'Looking at the Sun's Corona'
Invented by Bernard Lyot

Coronagraphy

- "Cover the star with your thumb!"
- Removing diffraction from star whilst letting planet light through

Diamond turned optic

It works...

Real Image with Phase Plate

Modeled Image

Semi-major axis (AU)

dM=11mag 2.46 arcsec 0.6 hours

Procyon B

 -	-
 6	
_	ы.

dM=11mag 2.46 arcsec 1.5 hours

 -	-	
 ۰.	o	
~		

Conclusions

- Thermal imaging is sensitive enough (assuming models are close to reality...)
- No planets so far... but watch this space!
- 8 stars out of 25 observed, no planet candidates

Fomalhaut

Dust Belt

Hubble Space Telescope in 2006

Fomalhaut

2006 2004

Fomalhaut b Planet

Fomalhaut

b.

N

E

Clio at MMT Dec 2006

Pluto's Orbit

Nothing bigger than 2 Jupiter Masses

Gemini CH4S Oct. 17, 2007UT N HR 8799 E

b

• Images with Clio tonight!

Beta Pic

Fig. 1. β Pic and HR 2435 recentered and saturated L' images (top left and top right respectively) in data set A Below are the divided (bottom

ures

btained bewith NaCo. × 14 lenslet e CONICA s. Saturated ation times s (NDIT) of e applied in noval. Nonf the stellar calibration. r (transmis-

Thanks for listening!